3.1681 \(\int \frac{(c+d x)^{5/4}}{(a+b x)^{9/4}} \, dx\)

Optimal. Leaf size=134 \[ -\frac{2 d^{5/4} \tan ^{-1}\left (\frac{\sqrt [4]{d} \sqrt [4]{a+b x}}{\sqrt [4]{b} \sqrt [4]{c+d x}}\right )}{b^{9/4}}+\frac{2 d^{5/4} \tanh ^{-1}\left (\frac{\sqrt [4]{d} \sqrt [4]{a+b x}}{\sqrt [4]{b} \sqrt [4]{c+d x}}\right )}{b^{9/4}}-\frac{4 d \sqrt [4]{c+d x}}{b^2 \sqrt [4]{a+b x}}-\frac{4 (c+d x)^{5/4}}{5 b (a+b x)^{5/4}} \]

[Out]

(-4*d*(c + d*x)^(1/4))/(b^2*(a + b*x)^(1/4)) - (4*(c + d*x)^(5/4))/(5*b*(a + b*x)^(5/4)) - (2*d^(5/4)*ArcTan[(
d^(1/4)*(a + b*x)^(1/4))/(b^(1/4)*(c + d*x)^(1/4))])/b^(9/4) + (2*d^(5/4)*ArcTanh[(d^(1/4)*(a + b*x)^(1/4))/(b
^(1/4)*(c + d*x)^(1/4))])/b^(9/4)

________________________________________________________________________________________

Rubi [A]  time = 0.0876632, antiderivative size = 134, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.316, Rules used = {47, 63, 331, 298, 205, 208} \[ -\frac{2 d^{5/4} \tan ^{-1}\left (\frac{\sqrt [4]{d} \sqrt [4]{a+b x}}{\sqrt [4]{b} \sqrt [4]{c+d x}}\right )}{b^{9/4}}+\frac{2 d^{5/4} \tanh ^{-1}\left (\frac{\sqrt [4]{d} \sqrt [4]{a+b x}}{\sqrt [4]{b} \sqrt [4]{c+d x}}\right )}{b^{9/4}}-\frac{4 d \sqrt [4]{c+d x}}{b^2 \sqrt [4]{a+b x}}-\frac{4 (c+d x)^{5/4}}{5 b (a+b x)^{5/4}} \]

Antiderivative was successfully verified.

[In]

Int[(c + d*x)^(5/4)/(a + b*x)^(9/4),x]

[Out]

(-4*d*(c + d*x)^(1/4))/(b^2*(a + b*x)^(1/4)) - (4*(c + d*x)^(5/4))/(5*b*(a + b*x)^(5/4)) - (2*d^(5/4)*ArcTan[(
d^(1/4)*(a + b*x)^(1/4))/(b^(1/4)*(c + d*x)^(1/4))])/b^(9/4) + (2*d^(5/4)*ArcTanh[(d^(1/4)*(a + b*x)^(1/4))/(b
^(1/4)*(c + d*x)^(1/4))])/b^(9/4)

Rule 47

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + 1)), x] - Dist[(d*n)/(b*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d},
x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && LtQ[m, -1] &&  !(IntegerQ[n] &&  !IntegerQ[m]) &&  !(ILeQ[m + n + 2, 0
] && (FractionQ[m] || GeQ[2*n + m + 1, 0])) && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 331

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[a^(p + (m + 1)/n), Subst[Int[x^m/(1 - b*x^n)^(
p + (m + 1)/n + 1), x], x, x/(a + b*x^n)^(1/n)], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && LtQ[-1, p, 0] && NeQ[
p, -2^(-1)] && IntegersQ[m, p + (m + 1)/n]

Rule 298

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[-(a/b), 2]], s = Denominator[Rt[-(a/b),
2]]}, Dist[s/(2*b), Int[1/(r + s*x^2), x], x] - Dist[s/(2*b), Int[1/(r - s*x^2), x], x]] /; FreeQ[{a, b}, x] &
&  !GtQ[a/b, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{(c+d x)^{5/4}}{(a+b x)^{9/4}} \, dx &=-\frac{4 (c+d x)^{5/4}}{5 b (a+b x)^{5/4}}+\frac{d \int \frac{\sqrt [4]{c+d x}}{(a+b x)^{5/4}} \, dx}{b}\\ &=-\frac{4 d \sqrt [4]{c+d x}}{b^2 \sqrt [4]{a+b x}}-\frac{4 (c+d x)^{5/4}}{5 b (a+b x)^{5/4}}+\frac{d^2 \int \frac{1}{\sqrt [4]{a+b x} (c+d x)^{3/4}} \, dx}{b^2}\\ &=-\frac{4 d \sqrt [4]{c+d x}}{b^2 \sqrt [4]{a+b x}}-\frac{4 (c+d x)^{5/4}}{5 b (a+b x)^{5/4}}+\frac{\left (4 d^2\right ) \operatorname{Subst}\left (\int \frac{x^2}{\left (c-\frac{a d}{b}+\frac{d x^4}{b}\right )^{3/4}} \, dx,x,\sqrt [4]{a+b x}\right )}{b^3}\\ &=-\frac{4 d \sqrt [4]{c+d x}}{b^2 \sqrt [4]{a+b x}}-\frac{4 (c+d x)^{5/4}}{5 b (a+b x)^{5/4}}+\frac{\left (4 d^2\right ) \operatorname{Subst}\left (\int \frac{x^2}{1-\frac{d x^4}{b}} \, dx,x,\frac{\sqrt [4]{a+b x}}{\sqrt [4]{c+d x}}\right )}{b^3}\\ &=-\frac{4 d \sqrt [4]{c+d x}}{b^2 \sqrt [4]{a+b x}}-\frac{4 (c+d x)^{5/4}}{5 b (a+b x)^{5/4}}+\frac{\left (2 d^{3/2}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{b}-\sqrt{d} x^2} \, dx,x,\frac{\sqrt [4]{a+b x}}{\sqrt [4]{c+d x}}\right )}{b^2}-\frac{\left (2 d^{3/2}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{b}+\sqrt{d} x^2} \, dx,x,\frac{\sqrt [4]{a+b x}}{\sqrt [4]{c+d x}}\right )}{b^2}\\ &=-\frac{4 d \sqrt [4]{c+d x}}{b^2 \sqrt [4]{a+b x}}-\frac{4 (c+d x)^{5/4}}{5 b (a+b x)^{5/4}}-\frac{2 d^{5/4} \tan ^{-1}\left (\frac{\sqrt [4]{d} \sqrt [4]{a+b x}}{\sqrt [4]{b} \sqrt [4]{c+d x}}\right )}{b^{9/4}}+\frac{2 d^{5/4} \tanh ^{-1}\left (\frac{\sqrt [4]{d} \sqrt [4]{a+b x}}{\sqrt [4]{b} \sqrt [4]{c+d x}}\right )}{b^{9/4}}\\ \end{align*}

Mathematica [C]  time = 0.0580159, size = 73, normalized size = 0.54 \[ -\frac{4 (c+d x)^{5/4} \, _2F_1\left (-\frac{5}{4},-\frac{5}{4};-\frac{1}{4};\frac{d (a+b x)}{a d-b c}\right )}{5 b (a+b x)^{5/4} \left (\frac{b (c+d x)}{b c-a d}\right )^{5/4}} \]

Antiderivative was successfully verified.

[In]

Integrate[(c + d*x)^(5/4)/(a + b*x)^(9/4),x]

[Out]

(-4*(c + d*x)^(5/4)*Hypergeometric2F1[-5/4, -5/4, -1/4, (d*(a + b*x))/(-(b*c) + a*d)])/(5*b*(a + b*x)^(5/4)*((
b*(c + d*x))/(b*c - a*d))^(5/4))

________________________________________________________________________________________

Maple [F]  time = 0.042, size = 0, normalized size = 0. \begin{align*} \int{ \left ( dx+c \right ) ^{{\frac{5}{4}}} \left ( bx+a \right ) ^{-{\frac{9}{4}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x+c)^(5/4)/(b*x+a)^(9/4),x)

[Out]

int((d*x+c)^(5/4)/(b*x+a)^(9/4),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (d x + c\right )}^{\frac{5}{4}}}{{\left (b x + a\right )}^{\frac{9}{4}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)^(5/4)/(b*x+a)^(9/4),x, algorithm="maxima")

[Out]

integrate((d*x + c)^(5/4)/(b*x + a)^(9/4), x)

________________________________________________________________________________________

Fricas [B]  time = 2.78767, size = 842, normalized size = 6.28 \begin{align*} -\frac{20 \,{\left (b^{4} x^{2} + 2 \, a b^{3} x + a^{2} b^{2}\right )} \left (\frac{d^{5}}{b^{9}}\right )^{\frac{1}{4}} \arctan \left (-\frac{{\left (b x + a\right )}^{\frac{3}{4}}{\left (d x + c\right )}^{\frac{1}{4}} b^{7} d \left (\frac{d^{5}}{b^{9}}\right )^{\frac{3}{4}} -{\left (b^{8} x + a b^{7}\right )} \sqrt{\frac{\sqrt{b x + a} \sqrt{d x + c} d^{2} +{\left (b^{5} x + a b^{4}\right )} \sqrt{\frac{d^{5}}{b^{9}}}}{b x + a}} \left (\frac{d^{5}}{b^{9}}\right )^{\frac{3}{4}}}{b d^{5} x + a d^{5}}\right ) - 5 \,{\left (b^{4} x^{2} + 2 \, a b^{3} x + a^{2} b^{2}\right )} \left (\frac{d^{5}}{b^{9}}\right )^{\frac{1}{4}} \log \left (\frac{{\left (b x + a\right )}^{\frac{3}{4}}{\left (d x + c\right )}^{\frac{1}{4}} d +{\left (b^{3} x + a b^{2}\right )} \left (\frac{d^{5}}{b^{9}}\right )^{\frac{1}{4}}}{b x + a}\right ) + 5 \,{\left (b^{4} x^{2} + 2 \, a b^{3} x + a^{2} b^{2}\right )} \left (\frac{d^{5}}{b^{9}}\right )^{\frac{1}{4}} \log \left (\frac{{\left (b x + a\right )}^{\frac{3}{4}}{\left (d x + c\right )}^{\frac{1}{4}} d -{\left (b^{3} x + a b^{2}\right )} \left (\frac{d^{5}}{b^{9}}\right )^{\frac{1}{4}}}{b x + a}\right ) + 4 \,{\left (6 \, b d x + b c + 5 \, a d\right )}{\left (b x + a\right )}^{\frac{3}{4}}{\left (d x + c\right )}^{\frac{1}{4}}}{5 \,{\left (b^{4} x^{2} + 2 \, a b^{3} x + a^{2} b^{2}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)^(5/4)/(b*x+a)^(9/4),x, algorithm="fricas")

[Out]

-1/5*(20*(b^4*x^2 + 2*a*b^3*x + a^2*b^2)*(d^5/b^9)^(1/4)*arctan(-((b*x + a)^(3/4)*(d*x + c)^(1/4)*b^7*d*(d^5/b
^9)^(3/4) - (b^8*x + a*b^7)*sqrt((sqrt(b*x + a)*sqrt(d*x + c)*d^2 + (b^5*x + a*b^4)*sqrt(d^5/b^9))/(b*x + a))*
(d^5/b^9)^(3/4))/(b*d^5*x + a*d^5)) - 5*(b^4*x^2 + 2*a*b^3*x + a^2*b^2)*(d^5/b^9)^(1/4)*log(((b*x + a)^(3/4)*(
d*x + c)^(1/4)*d + (b^3*x + a*b^2)*(d^5/b^9)^(1/4))/(b*x + a)) + 5*(b^4*x^2 + 2*a*b^3*x + a^2*b^2)*(d^5/b^9)^(
1/4)*log(((b*x + a)^(3/4)*(d*x + c)^(1/4)*d - (b^3*x + a*b^2)*(d^5/b^9)^(1/4))/(b*x + a)) + 4*(6*b*d*x + b*c +
 5*a*d)*(b*x + a)^(3/4)*(d*x + c)^(1/4))/(b^4*x^2 + 2*a*b^3*x + a^2*b^2)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)**(5/4)/(b*x+a)**(9/4),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (d x + c\right )}^{\frac{5}{4}}}{{\left (b x + a\right )}^{\frac{9}{4}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)^(5/4)/(b*x+a)^(9/4),x, algorithm="giac")

[Out]

integrate((d*x + c)^(5/4)/(b*x + a)^(9/4), x)